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ARTICLE INFO ABSTRACT

White-footed mice are important hosts for immature blacklegged ticks (Ixodes scapularis) and the most com-
petent reservoir hosts for several tick-borne pathogens, including the agent of Lyme disease, in eastern North
America. The distribution of larval ticks on individual mice tends to be highly heterogeneous, potentially re-
sulting in few individual hosts causing the majority of host-to-tick transmission events. In this study, we created
an artificial neural network (ANN) model using a 20 year data set from Millbrook, NY, to understand which
attributes of mice or the environment predict high larval burden. Furthermore, we performed a sensitivity
analysis to explore the importance of, and interactions between, the most influential attributes. Our analysis
indicated that highest larval burden is predicted in warmer and drier than average years when host abundance is
low, and that climatic conditions and host density are far more important in predicting larval burden than traits
of individual mice, a finding that could have human health implications within the context of a warming climate.
Practically, our results suggest that instead of basing tick-control treatments on particular attributes of hosts,
treatments should be targeted based on climate factors. Additionally, our results highlight the importance of
including variable interactions in models aiming to predict vector (tick) aggregation, and, most broadly, de-
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monstrate the utility of ANNs in understanding aggregation of ticks and other vectors.

1. Introduction

In eastern and central North America, blacklegged ticks (Ixodes
scapularis) are key vectors in the spread of zoonotic pathogens including
the agents of Lyme disease, human babesiosis, and human granulocytic
anaplasmosis. These pathogens are transmitted to ticks during blood
meals on infected vertebrate hosts. Of the many vertebrate hosts on
which these ticks feed, the white-footed mouse (Peromyscus leucopus)
plays a particularly important role in the spread of tick-borne diseases.
Not only are larval burdens on mice 2-3 x higher than on other rodent
hosts (Schmidt et al., 1999), likely due to higher survival (Keesing et al.,
2009), but also, the white-footed mouse is the most competent reservoir
for Borrelia burgderfori s.I. (Lane et al., 1991; LoGiudice et al., 2003), the
bacterial agent responsible for Lyme disease, as well as for Babesia
microti and Anaplasma phagocytophilum, the agents of babesiosis and
anaplasmosis, respectively (Hersh et al., 2012; Levi et al., 2016).

Within a host population, vector burdens are often heterogeneous
such that a minority of hosts feed the majority of vectors, while many
hosts feed very few (Woolhouse et al., 1997). In fact, it is widely ac-
cepted that parasite distributions within host populations are generally
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most adequately described by the negative binomial distribution
(Anderson and May, 1978; Shaw et al., 1998), which is characterized by
a sharp peak and long right tail. Larval aggregation is particularly im-
portant because it allows for a scenario in which a single infected host
can infect a large group of naive larvae, making a small proportion of
hosts potentially responsible for a vast percentage of transmission
events. Furthermore, it is well established that the potential rate of
spread of an infection in a host population, Ry, increases with the de-
gree of vector aggregation (Woolhouse et al., 1997). Based on the po-
tential impact of these few, key hosts, there has been widespread in-
terest in determining which factors are associated with high tick burden
on select hosts.

Within the past four decades, researchers have identified various
attributes of hosts and the environment associated with high tick
burden. For example, some studies (Ostfeld et al., 1996; Schmidt et al.,
1999; Devevey and Brisson, 2012) have found that males tend to have
higher mean tick burdens than females and that heavier, older hosts
tend to have higher burdens than lighter, younger hosts (Brunner and
Ostfeld, 2008). Additionally, it has been well established that larval
Ixodes scapularis ticks have strong seasonal life histories (Spielman
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et al., 1985) characterized by a small, early-summer peak in host-
seeking activity and a much larger peak in the late summer (Spielman
et al., 1985; Ostfeld et al., 1996). Furthermore, presumably due to the
strong seasonal life history, multiple studies (Brunner and Ostfeld,
2008; Kiffner et al., 2010) have found seasonality (time of year) to be
the single most important factor when predicting tick burden.

Although there has been significant progress in explaining hetero-
geneity in parasite aggregation among vertebrate hosts, many studies
have produced contradictory results, and the relative importance of
environmental attributes versus individual-host attributes on tick
burden remains controversial. For example, some studies have con-
cluded that individual-host traits play little to no role in predicting tick
burden (Calabrese et al., 2011; Lutermann et al., 2011), instead finding
more support for the importance of tick density and spatial aggregation.
Conversely, others have found that individual-host attributes are in-
strumental in predicting tick burden (Dallas et al., 2012; Devevey and
Brisson, 2012). It seems possible that tick burdens are a complex
function of random spatial aggregation of host-seeking ticks, individual-
host characteristics, host abundance or dispersion, and climate factors
(Brunner and Ostfeld, 2008; Kiffner et al., 2010). The lack of con-
sistency between studies may derive from the complexity of the inter-
actions between the various attributes (Brunner and Ostfeld, 2008;
Sackett, 2018).

Artificial neural networks (ANNs) have long been recognized as
powerful tools to explore complex, non-linear problems and have
proved their utility in a range of ecological areas from freshwater sys-
tems (Brosse et al., 1999) to species richness (Monteil et al., 2005).
Importantly, the models offer a way to uncover patterns in data without
explicitly having to define the relationships between the model's vari-
ables (Jorgensen, 1999; Lek et al., 1996) and, unlike commonly utilized
statistical models, ANNs do not have any predefined restrictive as-
sumptions regarding variable distributions or underlying relationships
between dependent and independent variables (Chang, 2005).

Here we present a simple ANN that predicts larval burden on white-
footed mice based upon individual-specific, population level, and cli-
mate attributes. We followed our ANN models with sensitivity analyses
to gain more insight into the importance of, and interactions between,
each of the attributes. We explore the general usefulness of ANNs and
follow-up sensitivity analyses for exploring complex, interacting de-
terminants of larval burden on key reservoir hosts.

2. Materials and methods
2.1. Field data

We used 20 years of data from a small-mammal trapping program at
the Cary Institute of Ecosystem Studies campus in Dutchess County,
New York. This data set includes 16,864 observations of newly trapped
white-footed mice. As ANNs cannot process data records with missing
components, we excluded any incomplete observations (i.e., observa-
tions where sex or age was not recorded) resulting in 16,258 complete
observations. The data were collected on six permanent trapping grids,
each consisting of 242 Sherman traps arranged in pairs along an
11 x 11 grid covering ~2.25 ha (Brunner and Ostfeld, 2008). Each grid
was trapped for 2 consecutive nights between 6 and 16 times per year
between April and October from 1995 to 2015. In 1995 and 1997
mouse density on three of the grids was manipulated. In 1995 both mice
and chipmunks were removed during June and July and in 1997 only
mice were removed from mid June through July (Brunner and Ostfeld,
2008). For each capture, an animal's weight, sex age, reproductive
status, pregnancy and lactation status (for females) and larval I sca-
pularis count on the head and ears were recorded. To estimate mouse
density, we used Minimum Number Alive (MNA), the minimum number
of animals known to be alive during a sampling period. For small
mammals trapped on a similar schedule, MNA has been shown to be
highly correlated with the commonly used Jolly-Seber model: a method
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to estimate population size of marked animals in an open population
(Hilborn et al., 1976). The data from the mark-recapture study provided
values for the variable we are interested in predicting: the burden of
larval ticks on individual white-footed mice. These data also provided
values for some of the candidate variables that might explain larval tick
burdens, including population density of mice, host age, sex, re-
productive condition, and season.

2.2. Climate data

In addition to individual and population attributes of mice and the
season of their capture, we also explored climatic conditions as possible
determinants of tick burdens. Daily temperature data were obtained
from the Cary Institute archive and Cumulative Degree Days (CDDs)
were calculated as the cumulative degrees above 0°C (based on the
average daily temperature) from the first of the year up to and in-
cluding the date of the trapping session. We used the Palmer
Hydrological Drought Index (PHDI) as our measure of drought; this is a
long term drought measure, based on soil moisture, reservoir, and
ground water levels. New York Hudson Valley region drought data were
obtained from the National Oceanic and Atmospheric Administration
climate database (NOAA, 2018).

2.3. Data processing for NN

To normalize variable effect within our ANN, all quantitative vari-
ables were scaled between —0.5 and 0.5 using a linear max-min
transformation. Additionally, all qualitative variable values were con-
verted to separate, binary variables. To avoid conflation between day of
the year and CDD, CDD was converted to ACDD, defined as the CDD at
the date of the capture above or below the 20 year average for that date.
Similarly, to avoid conflation between age and weight, weight was
converted to Aweight, defined as the grams below or above the average
weight within each age class.

2.4. Model formation

Our ANN was fit using trapping data and the R package neuralnet
(Fritsch et al., 2018) in R version 3.3.1. (R CoreTeam, 2016). Neural
networks are non-linear functions, broken into a series of hidden layers,
which take input data and transform them to desired outputs. Each
node in a layer of a neural network transforms a linear combination of a
node-specific bias term and the weighted input data based on a defined,
and not necessarily linear, activation function. The output from each
node then becomes a new input for nodes in the next layer. The final
layer of the network calculates the output by, once again, transforming
a linear combination of its node-specific bias term and the weighted
output data from the last hidden layer, based on another activation
function. A loss function, defined as the difference between observed
values and the networks output, is calculated and iteratively used to
modify the weights and biases in the network through a process known
as backpropogation. A detailed description of the mathematical theory
of neural networks can be found in Bishop (1996). In our network, we
used resilient backpropogation with weight back tracking, a sum of
squares error function, and sigmoid and linear activation functions for
the hidden and output layer, respectively. There is general consensus
that most problems can be sufficiently modeled with a 3 layer network
(Bishop, 1995); therefore, in order to facilitate interpretability, all of
our models contained only a single hidden layer.

In order to determine optimal network architecture and variable
selection, we compared Akaike Information Criterion (AIC) values (as
calculated in Panchal et al., 2010) between candidate networks with
different input variable and hidden node combinations. Specifically, we
began with three versions of the full model containing all potential
variables (adult, sub-adult, sex, weight, reproductive condition, preg-
nancy status, lactation status, CDD, day of year, MNA and PHDI) with
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11, 10 or 9 nodes in our hidden layer. Although, generally, models with
more nodes yield a better fit, to avoid over fitting, the number of nodes
in the hidden layer should not exceed the number of input variables in
the neural network (Heaton, 2005). Therefore, we fit all models with n,
n-1 or n-2 nodes, where n is the number of input variables included in
the model. After fitting each model with all potential variables, we then
implemented a step-down approach, dropping single variables se-
quentially to construct additional candidate models and, ultimately,
retained the model with the lowest AIC value. Because neural networks
are nonlinear, their loss functions have many local minima: para-
meterizations where the function is the lowest in its immediate neigh-
borhood, but not the lowest in the function's entire range. This means
the network may converge to a local minimum instead of the global
minimum, the parameterization where the function is the lowest in its
entire range. To limit influence of non-optimal models, defined as
models where the network converged to a local minimum, each net-
work was fit 10 times with random initial values, and the average AIC
value between the 10 models was considered in our model comparison.

Once model architecture was established, we constructed 20 net-
works with the determined architecture and retained the network with
the lowest error rate to decrease the likelihood of convergence to a local
minimum. Finally, we determined optimal model threshold, the value
that the improvement in the error function must exceed for the model
to continue to iterate, based on R® between actual and predicted larval
burden. We stopped model iterations at the value at which additional
epochs of training yielded minimal improvement in model performance
(Appendix, Table 2). In order to maximize training data available, we
utilized the resubstitution method, which uses the same data to fit the
model and to estimate model error. We acknowledge that this metho-
dology may overestimate model performance as defined by accuracy of
predictions (Twomey and Smith, 1996).

It is widely accepted that warmer years advance larval phenology
(Levi et al., 2015). Therefore, in order to validate our model, we broke
our original data set into 5 groups of ACDD: very high (ACDD between
—286 and —166), high(ACDD between —166 and —40), moderate
(ACDD between —40 and 82), low (ACDD between 82 and 203), and
very low (ACDD between 203 and — 327), and examined the timing of
the beginning of the large larval peak for each group, with the ex-
pectation that when ACDD is higher, the larval peak will begin at an
earlier day of the year, reflecting the advanced phenology caused by
warmer years.

2.5. Model analysis

Our model analysis aimed to answer the following three questions.
First, under which conditions should we expect high, defined as at least
10 larvae, and highest, defined as the model's 100 highest predicted
burdens, larval burden on P. leucopus? Second, which attributes are
most influential in predicting larval burden? And, third, how do key
attributes interact to influence larval burden? To address all questions,
we examined full model output using a simulated data set that contains
all combinations of discretized input variables, within ranges measured
in our trapping data, as our input variables. To construct the simulated
data set, we discretized each input variable, except day of the year,
within its range (i.e., between maximum and minimum values recorded
in our trapping data for continuous variables, and between 0 and 1 for
binary variables). A priori, we hypothesized that the effect of host
abundance and host weight would be linear, so we discretized host
abundance and weight into 5 quantiles evenly distributed from the
minimum value recorded in our data to the maximum value recorded in
our data in order to examine model behavior over the full range of
possible input values (0%, 25%, 50%, 75% and 100%). Also a priori, we
hypothesized that the effect of climate variables could be more complex
so we discretized ACDD and PHDI into 11 quantiles again evenly dis-
tributed from the minimum value recorded in our data to the maximum
value recorded in our data (0%, 10%, 20%, ..., 100%), allowing us to
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detect possible intricate patterns based on climate variables modeled by
our ANN. To simulate conditions at the small larval peak, we held day
of year constant at day 156 (June 5). To simulate conditions at the large
larval peak, we varied day of the year from day 244 to day 260 (August
30-September 17), to account for the effect of CDD on the timing of
larval phenology, and considered the average larval burden over the
17 day span as our output. Our simulated data set had 54,450 unique
variable combinations. Within our trapping data, only about 8% and
6% of sub-adult and adult females were lactating or pregnant, respec-
tively, during the main larval peak. Based on this finding, we only
considered pregnant and lactating females during the small peak, when,
according to our data, about 50% and 43% of sub-adult or adult females
were pregnant or lactating, respectively.

To address our first question, under which conditions should we
expect high and highest larval burden on P. leucopus, we first evaluated
the 100 data points that yielded the highest model output, predicted
larval burden, from our simulated data set. To more generally de-
termine conditions that predict high larval burden, we defined high as
at least 10 larvae on a single host and inputted our simulated data for
each host subset (i.e., juvenile males, adult females) into our model (Eq.
(1)). To analyze model behavior, we constructed multi-faceted heat
maps using the R package ggplot2 (Wickham et al., 2018) with our
model output, either average larval burden at the large larval peak or
larval burden at the earlier peak, as our dependent variables.

To address our second question, which host traits and extrinsic
conditions are most influential in predicting tick burden, we calculated
each variable's overall effect to determine which variables most im-
pacted our model. Although techniques such as Garson's and Lek's al-
gorithms have been developed to interpret variable importance within
ANNSs, these methodologies often reach different conclusions, and do
not adequately interpret interactions (Olden and Jackson, 2002).
Therefore, to interpret our variable importance, we performed a com-
prehensive sensitivity analysis. For each variable, except day of year,
we constructed k single variable models based on our original multi-
variable ANN, where average peak larval burden was a function of the
focal variable and k is the total number of discrete combinations of non-
focal variables (note: variables were discretized for our sensitivity
analysis exactly as they were discretized for model analysis). We cre-
ated k single variable models, as opposed to creating one single variable
model with all non-focal variables held constant at the middle of their
range, to account for variable interactions. We then calculated the
sensitivity for each of the k models as the difference between the
function maximum and the function minimum when varying the focal
variable from — 0.5 to 0.5 for continuous variables or 0 or 1 for binary
variables. We took the average sensitivity over the k models to obtain
overall effect for the focal variable.

Finally, to interpret variable interactions, and investigate our third
question, we examined interaction multi-faceted heat maps for each
variable, except day of year. Each cell in these heat maps represents one
of the k combinations of non-focal variables. The difference between
function maximum and function minimum, for that set of conditions,
served as the dependent variable.

3. Results
3.1. Descriptive statistics

3.1.1. Larval burden

During the 20years, 16,864 white-footed mice were sampled for
demographic information and checked for larval I. scapularis. The mean
number of larvae per individual was 5.97 (range 0-242, mode = 0,
median = 2) and larval burden more closely followed a negative bi-
nomial distribution than a normal distribution. The vast majority of
individuals had very few larvae (64% of individuals had a larval burden
of < 4) and very few individuals had many larvae (< 2% had a larval
burden > 50). The mean number of larvae on males was 6.57 (range
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0-217, mode = 0, median = 2), while the mean number of larvae on
females was 5.01 (range 0-242, mode = 0, median = 2). Based on age
class, the mean number of larvae on juveniles was 3.45 (range 0-172,
mode = 0, median = 1), the mean number on sub-adults was 4.97
(range 10-169, mode = 0, median = 1), and the mean number on
adults was 7.63 (range 0-242, mode = 0, median = 3).

3.1.2. Averages of relative explanatory variables

The average weight of adults was 21.08 g, the average weight of
sub-adults was 16.37 g, and the average weight of juveniles was
12.16 g; Aweight is in relation to these values. Average CDD at day 244
(August 30), the approximate start of the main seasonal peak of larval
tick abundance was 2952.31° (average CDD values for each day of the
year given in Appendix Fig. 1); ACDD is in relation to these values.

3.2. Full model

Our final model, described in Eq. (1), includes all variables except
whether male or female reproductive features were visible, contains 10
nodes in the hidden layer, and was fit with a threshold of 1.

10
bo+ z Wn 1
n=1 -1

=10 I
Y L+ o bnt 2, Wi &)

b,, bn, Wy, and wj, represent the bias term in the output layer, the bias
terms in the hidden layer, the connection weights between the hidden
nodes and output, and the connection weights between the input
variables and hidden nodes, respectively. Full model comparison results
and AIC values are given in Table 1 and full model weights and bias
terms are given in Appendix Table 1. Overall, the ANN produced an R*
value of 0.52 signifying that our model accounted for 52% of the var-
iation seen in the data. Furthermore, the model predicted about 24% of

Table 1

Support for models of larval burden on P.leucopus. Summary of AIC and AAIC
values for each of the candidate models considered in model comparison. Full
model included all of the following variables: sex, whether or not the individual
is a sub-adult as opposed to juvenile (sub), whether or not the individual is an
adult as opposed to sub-adult, weight (wt), whether the vagina was visible
(vag), whether testes were visible, pregnancy status (pg), lactation status (lac),
cumulative degree days above or below 20year average from 1995-2015
(CDD), day of year, minimum number of hosts alive (MNA), and Palmer
Hydrological Drought Index (PHDI).

Model AIC A AIC
full - (vag + testes) —45,702.800 0

full - lac —45,687.700 15.114
full - vag —45,653.200 49.543
full - (vag + lac) —45,643 59.817
full -sub —45,641.600 61.151
full - testes —45,637.200 65.582
full - (sub + sex) —45,631 71.782
full - (lac + testes) —45,610.500 92.259
Full —45,594.200 108.626
full - adult —45,591.800 110.952
full - pg —45,591.800 111.028
full - sex —45,590.800 111.978
full - (vag + sex) —45,573.600 129.173
full - (vag + sub) —45,545.100 157.725
full - (vag + testes + sex) —45,543.900 158.864
full - (lac + sub) —45,541.700 161.097
full - (testes + sex) —45,528.800 173.967
full - (vag + testes + sub) —45,525.800 177.018
full — wt —45,506.300 196.480
full - (sub + testes) —45,480 222.777
full - (lac + sex) —45,465 237.823
full - (vag + testes + lac) —45,162.600 540.213
full - PHDI —45,020.900 681.855
full - MNA —44,933.200 769.621
full - CDD —44,693.800 1008.950
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Table 2

Distribution of residuals between actual larval
burden from raw data and predicted larval
burden from model output. Values indicate the
percentages of predicted values that fall into
each residual category. (i.e., 23.67% of our
predicted values from our model output were
correct, 57.19% were off by 1 - 5 larvae, etc.)

Residual Percentage
0 23.67%
1-5 57.19%
6-10 9.48%
10-25 7.87%
26-50 2.12%

> 50 0.84%

the larval burdens correctly, and predicted an additional 57% within 5
larvae. Full distribution of model output error terms is given in Table 2.
An analysis of residuals showed that the model is not very accurate
when predicting larval burdens of 0, or larval burdens greater than
about 50 (Appendix Fig. 1). Inspection of the day of the year that the
large larval peak begins (defined as the day on which the vertex of the
concave up parabola, initiating the peak, falls) within each ACDD group
(very high, high, moderate, low and very low) showed that our ANN
successfully detected that warmer years see an earlier peak than cooler
years (Appendix Fig. 2), offering validation for our model.

3.3. Model analysis

3.3.1. Question 1: under which conditions does our model predict high
larval burdens?

During the large (main) larval peak, 82% of hosts that our ANN
predicted to have the highest larval burden were sub-adults or adults.
67% were males and 72% were of at least average weight. One hundred
percent of hosts that our ANN predicted to have the highest larval
burden were predicted when host abundance was 1 and 83% and 79%
were predicted during moderately warm (ACDD 143°-203°C above
average), and dry (PHDI between —3.83 and — 2.41) years (Fig. 1). The
model predicted at most 86 larvae on a single host.

The model predicted similar general patterns across all subgroups
(R? values between model output at the large larval peak for adult
males and all other subgroups are given in Appendix Table 3); there-
fore, we analyzed output associated with a single subgroup, adult
males, to understand when the model predicts high larval burden, de-
fined as > 10 larvae per host.

When MNA is very low, our ANN predicts > 10 larvae per in-
dividual, regardless of host weight CDD or PHDI, with highest larval
burden predicted in a relatively warm and dry climate. When MNA is
moderate, generally, our ANN predicts more than10 larvae per host
when ACDD > 0 with little influence of host weight or PHDI. As MNA
further increases, however, our ANN only predicts > 10 larvae per host
when the climate is both warm and relatively dry, and as host body size
declines, a drier climate is required (Fig. 2).

3.3.2. Question 2: which attributes are most influential in predicting larval
burden?

According to our sensitivity analysis, ACDD was the most influential
variable in our model, influencing the predicted larval burden by an
average of about 18 larvae, over all discrete combinations of other
variables. MNA and PHDI were also important, affecting larval burden
predictions by about 12 and 8 larvae on average, respectively. In gen-
eral, individual-specific attributes were less important than other at-
tributes. Of the individual-specific attributes, weight had the largest
effect on model output, influencing predicted larval burden by about 4
larvae on average. Sex and sub-adult status each affected larval burden
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Fig. 1. Heat map of full model output of predicted larval burden on adult, male white-footed mice during the large larval peak (averaged over days 244-260). Large
x-axis displays Aweight from the average weight within the subgroup at 0, 25th, 50th, 75th and 100th percentile. Small x-axis displays PHDI at 0, 10th, 20th, ...,
100th percentile ranging from —4 to 4 (note: full PHDI scale ranges from —10 to 10). Large y-axis displays MNA of white-footed mice at 0, 25th, 50th, 75th and
100th percentile, ranging from 1 individual to 267. Small y-axis displays ACDD from the 20 year average (from 1995 to 2015) at 0, 10th, 20th, ..., 100th percentile

ranging from 333° below average to 333° above average.

by about 2 larvae (with males predicted to have more larvae than fe-
males and sub-adults more than juveniles) on average. Whether a fe-
male was pregnant or a host was an adult (as opposed to a sub-adult),
had very little influence on predicted larval burden: each increasing
predictions by on average < 1 larva. Finally, lactation decreased pre-
dicted burden by about 2 larvae on average (Table 3).

3.3.3. Question 3: how do attributes interact to influence larval burden?

According to our model, there is substantial variation in the influ-
ence of ACDD, PHDI and MNA on predicted larvae based on the state of
other variables. ACDD, for example, has a very large influence on larval
burden in years with a drier climate (PHDI < —0.3) and low host
abundance (MNA = 1), but a much smaller influence in wetter years or
years when host abundance is high (Fig. 3a). Similarly, PHDI has a
much larger effect on larval burden in years with moderate to high
temperatures (CDD 82°-265 °C above average), especially when host
abundance is low (MNA = 1) (Fig. 3b). Finally, host abundance has the
largest influence on predicted larval burden in warmer than average
years (CDD > 20°C above average), particularly those with a drier
climate (PHDI < —2) (Fig. 3c). The impact of weight on the model was
relatively constant across all conditions, and there were comparatively
minimal interactions between sex, age, pregnancy or lactation and any
other variables, reflecting their small overall influence on larval
burden.
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4. Discussion

Aggregation of vectors or parasites on hosts is known to increase the
potential rate of spread of an infection in a host population (Woolhouse
et al., 1997). Within the realm of tick-borne diseases, larval aggregation
on white-footed mice, particularly competent reservoirs for Borrelia
burgdorfori s.I. (Lane et al., 1991; LoGiudice et al., 2003), increases the
spread of the spirochete bacterium. Therefore, understanding which
attributes predict high larval burden on white-footed mice is important
because it could allow for more targeted control efforts, ultimately re-
ducing the spread of Lyme disease to human populations.

The purpose of our study was to create and analyze a simple ANN
that predicts larval burden on white-footed mice based on individual-
specific, population, and climate attributes in order to uncover com-
plex, possibly overlooked patterns governing larval burden and un-
derstand the importance of, and interactions between, these attributes.
Larval burdens within our data were highly aggregated: while most
individuals had very low larval burdens, a few fed many larvae.
Overall, our model, which included day of year, host age class, host sex,
host weight, host pregnancy status, host lactation status, host abun-
dance, and measures of annual temperature and drought, accounted for
52% of the variation in larval burden. Although our model predicted
nearly 81% of host larval burden within 5 larvae, our model predictions
were not very accurate when actual larval burden was 0 or > 50. Poor
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Fig. 2. Heat map of high larval burden (> 10 larvae/host) on adult, male white-footed mice during the large larval peak (averaged over days 244-260). Large x-axis
displays Aweight from the average weight within subgroup at the 0, 25th, 50th, 75th and 100th percentiles. Small x-axis displays PHDI at the 0, 10th, 20th, ..., 100th
percentiles ranging from — 4 to 4 (note: full PHDI scale ranges from —10 to 10). Large y-axis displays MNA of white-footed mice at the 0, 25th, 50th, 75th and 100th
percentiles, ranging from 1 individual to 267. Small y-axis displays ACDD from the 20 year average (from 1995 to 2015) at the 0, 10th, 20th, ..., 100th percentiles
ranging from 333° below average to 333° above average. Only conditions where model predicts high larval burden (> 10 larvae) are displayed.

Table 3

Results from the sensitivity analysis calcu-
lated as, Effect = the average difference be-
tween function maximum and the function
minimum when varying each variable from
—0.5 to 0.5 for continuous variables or 0 or 1
for binary variables over k models re-
presenting discrete combinations of other
variables (CDD = cumulative degree days,
MNA = minimum number of hosts alive,
PHDI = Palmer Hydrological Drought index).

Variable Effect
CDD 17.62
MNA 12.41
PHDI 8.43
AWeight 3.54
Sex 211
Sub-adult 1.77
Lactation® 1.77
Pregnancy” 0.63
Adult 0.54

# Indicates that variable was only con-
sidered during the early small larval peak.
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accuracy, especially among extreme values indicates that our model
was either missing important attributes affecting larval aggregation,
such as an individual's ability to groom or its physiological status, or,
perhaps offers partial support for the conclusion that tick burden is
largely caused by simple bad luck (Calabrese et al., 2011), described as
inhabiting a home range with many aggregated larvae.

Our model predicted highest larval burden on non-juvenile males of
at least average weight, when host abundance is very low, during
moderately warm and dry years. Furthermore, our ANN detected si-
milar patterns when predicting > 10 larvae on a single host, among all
subgroups. When modeling larval burden at the main peak, our ANN
nearly always predicts > 10 larvae per host, regardless of the host's age,
sex or weight, or the climate conditions if host density is low. As host
density increases, however, our ANN predicts > 10 larvae on a single
host only in warmer than average years, regardless of host weight.
When host density is very high, the model predicts > 10 larvae per host
only when the climate is warm and dry, with a drier climate required
for the model to predict > 10 larvae on smaller hosts.

Intraspecific dilution provides a reasonable mechanism for this
finding in that the higher the host density, the smaller the probability
that any larva will feed on a particular individual. This explanation
suggests that a warmer, drier climate always predicts high larval
burden, but the effect is masked when average larval burden is diluted
due to a large host population. Similarly, PHDI consistently had a larger
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Fig. 3. Heat maps of each continuous variable's effect, defined as the difference between the function maximum and the function minimum when varying each
variable from —0.5 to 0.5, as a function of other continuous variables. a. Effect of ACDD as a function of MNA, PHDI and Aweight. The large x-axis displays MNA of
white-footed mice at the 0, 25th, 50th, 75th and 100th percentiles, ranging from 1 individual to 267. Small x-axis displays PHDI at the 0, 10th, 20th, ..., 100th
percentiles ranging from — 4 to 4 (note: full PHDI scale ranges from —10 to 10). Y-axis displays Aweight from the average weight within the subgroup at the 0, 25th,
50th, 75th and 100th percentiles. b. Effect of PHDI as a function of MNA, ACDD, and Aweight. The large x-axis displays MNA of white-footed mice at the 0, 25th,
50th, 75th and 100th percentiles, ranging from 1 individual to 267. Small x-axis displays ACDD from the 20 year average (from 1995 to 2015) at the 0, 10th, 20th, ...,
100th percentiles ranging from 333° below average to 333° above average. Y-axis displays Aweight from the average weight within the subgroup at the 0, 25th, 50th,
75th and 100th percentiles. c. Effect of MNA as a function of ACDD, PHDI and Aweight. The large x-axis displays ACDD from the 20 year average (from 1995 to 2015)
at the 0, 10th, 20th, ..., 100th percentiles ranging from 333° below average to 333° above average. The small x-axis displays PHDI at the 0, 10th, 20th, ..., 100th
percentiles ranging from — 4 to 4 (note: full PHDI scale ranges from —10 to 10). Y-axis displays Aweight from the average weight within the subgroup at the 0, 25th,

50th, 75th and 100th percentiles.

effect on larval burden when CDD was above average, suggesting the
existence of a temperature threshold, below which larval burden is so
low that the effect of drought becomes masked. According to our sen-
sitivity analysis, climate attributes, on average, affect larval burden by
8-18 larvae, host density affects larval burden by, on average, 12
larvae, while individual-attributes such as sex, age and mass affect
larval burden, on average, by fewer than 4 larvae.

Indeed, these findings lend further support to the conclusion pre-
viously reached that individual-specific traits do not account for enough
variation in burdens to warrant special focus (Brunner and Ostfeld,
2008). Instead, our results suggest that to increase the likelihood of
treating individual white-footed mice with high larval burdens, tick
control treatments, such as biological or chemical acaricides, should be
applied based on climatic attributes, specifically in warmer than
average and slightly dry years. Controlling mouse abundance, rather
than tick burdens on mice, could potentially also reduce opportunities
by ticks to feed on this host species. However, our results suggest that
reduced mouse abundance would increase the per-mouse larval burden,
potentially offsetting the efficacy of mouse control. In addition, strong

density-dependent reproduction by white-footed mice could render
mouse-control short-lived (Wang et al., 2008). Larval blacklegged ticks
feed on many other mammal and bird hosts; therefore, our modeling
approach could be applied to tick burdens on those hosts as well.
However, none of these other hosts is as permissive to blacklegged tick
feeding or as efficient a reservoir for B. burgdorfori s.I. infection as are
mice (Keesing et al., 2009).

In recent years, the earth's global mean temperature has consistently
been above historic averages (Reidmiller et al., 2018; Stocker et al.,
2018); given projected climate change, warmer than average years,
conducive to high larval burden on white-footed mice according to our
model, will be more and more common in much of the Lyme endemic
zone in the coming decades. In general, the consequences of global
climate change on infectious disease, and more specifically, tick-borne
disease, are not well understood (Ostfeld and Brunner, 2015). This is in
part due to the need for long term studies and additional empirical
evidence (Eisen, 2008) and in part due to the overwhelming number of
components and interactions involved in the biology of vectors, hosts
and pathogens (Ogden and Lindsay, 2016; Ostfeld and Brunner, 2015).
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Warm conditions can enhance tick host-seeking, accelerate develop-
ment, increase or decrease survival, and potentially affect natural
enemies of ticks (Ogden et al., 2004; Dautel et al., 2008; Tagliapietra
et al., 2011; Burtis et al., 2016). Because drier conditions are not ex-
pected to directly increase tick abundance or host-seeking behavior, we
suspect that the higher tick burdens associated with drier conditions
arise from changes in mouse behavior, although further studies are
warranted. Warmer, wetter conditions associated with anthropogenic
climate change are expected to generally increase tick abundance lo-
cally and permit range expansion, increasing tick-borne disease risk
(Bennet et al., 2006; Materna et al., 2008; Ostfeld and Brunner, 2015).
Our results suggest that warmer, drier conditions could increase tick
burdens on mice potentially resulting in increased tick survival
(Keesing et al., 2009) and increased rates of pathogen acquisition
(Hersh et al., 2012).

Finally, our study demonstrates the utility of ANNs in modeling tick
aggregation and parasite aggregation more generally. Our methodology
presents novel approaches towards interpreting ANNs, which have
often been described as “black boxes” due to the difficulty of inter-
preting relationships between input variables and model output and the
consequential difficulty of gaining insight from the model into the un-
derlying mechanisms governing its behavior (Anderson, 1995). The
variable interactions uncovered by our ANN could be included in future
models that require specific interaction terms to be defined a priori. The
current lack of consensus regarding the utility of various attributes in
predicting larval burden may result from overlooking these interac-
tions. Overall, continued application of ANNs towards the question of
parasite burden, paired with methods to interpret model output, will
allow for detection of patterns not discernible in traditional statistical
models, and further our understanding of the many, complex me-
chanisms that ultimately affect pathogen transmission.
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