A call for inclusive conservation

Heather Tallis, Jane Lubchenco and 238 co-signatories petition for an end to the infighting that is stalling progress in protecting the planet.

An age-old conflict around a seemingly simple question has resurfaced: why do we conserve nature? Contention around this issue has come and gone many times, but in the past several years we believe that it has reappeared as an increasingly acrimonious debate between, in essence, those who argue that nature should be protected for its own sake (intrinsic value)⁴‑⁵ and those who argue that we must also save nature to help ourselves (instrumental value)³–⁵.

Champions of instrumental value contend, among other things, that protecting nature for its own sake alone has failed to stem the tide of species extinction, that conservation should be open to partnering with business to effect the greatest change and that conservation support will be broadened by more directly considering other social objectives (such as food security or clean water). By contrast, advocates of intrinsic value assert that ethical arguments for conservation should be sufficient, that partnering with business is selling out to those who create the problem and that social considerations are already central to conservation.

Unfortunately, what began as a healthy debate has, in our opinion, descended into vitriolic, personal battles in universities, academic conferences, research stations, conservation organizations and even the media⁶. We believe that this situation is stifling productive discourse, inhibiting funding and halting progress.

Adding to the problem, in our view, is the issue that this dispute has become dominated by only a few voices, nearly all of them men’s. We see this as illustrative of the bigger issues of gender and cultural bias that also continue to hinder conservation.

The stakes? The future of conservation science, practice and policy. Conservation regularly encounters varied points of view and a range of values in the real world. To address and engage these views and values, we call for more-inclusive representation of scientists and practitioners in the charting of our field’s future, and for a more-inclusive approach to conservation.

EMBRACE DIVERSE VALUES AND VOICES

Women historically have been under-represented in environmental-science faculty positions and in conservation practice, as in most scientific fields. This disparity is changing globally, but at different rates: more slowly in Asia and more quickly in Latin America and the Caribbean, for example⁷. In the United States, more than half the leadership positions in conservation organizations are now held by women. And on the global stage, women currently hold top positions in many leading efforts, including the Intergovernmental Platform on Biodiversity and Ecosystem Services, the Future Earth science committee, and the International Union for Conservation of Nature. This progress makes the dearth of female voices in the debate about the premise of our profession all the more stark.

The signatories in agreement here — women and men from around the globe — support an equal role for women and for practitioners of diverse ethnicities and cultures in envisaging the future of conservation science and practice.

Together, we propose a unified and diverse conservation ethic; one that recognizes and accepts all values of nature, from intrinsic to instrumental, and welcomes all philosophies justifying nature protection and restoration, from ethical to economic, and from aesthetic to utilitarian. What we propose is not new. This diverse set of ethics has a long-standing history in modern conservation⁸. For ...
example, more than 100 years ago, both intrinsic and instrumental values were used in the creation of Yellowstone National Park in Wyoming, and when Californians spurred the broader environmental movement in the United States by using economic studies of the value of birds alongside compelling speeches about the purity and grandeur of nature.

These values need not be in opposition, although they do reflect the hard choices that conservation often faces. They can instead be matched to contexts in which each one best aligns with the values of the many audiences that we need to engage. Those on the side of intrinsic value will argue that by recognizing the many ways in which people benefit from nature, we cheapen nature and miss opportunities to save components of it that have little or no obvious value to people. This is a valid concern, and one of many reasons why we must continue to uphold intrinsic values to audiences who share those values, or may be inspired towards them. However, instrumental values will remain more powerful for other audiences, and should be used in the many contexts where broadening support for conservation is essential.

Clearly, all values will not be equally served in every context. Approaching conservation problems with representative perspectives and a broad base of respect, trust, pragmatism and shared understanding will more quickly and effectively advance our shared vision of a thriving planet. Prominent institutions already embrace multiple voices and values. For example, the field’s signature international treaty, the Convention on Biological Diversity, calls for the conservation of biodiversity, and for the sustainable use and equitable sharing of its benefits. Some countries leading in this area, such as Mexico, Costa Rica and Colombia, have followed suit, capturing these joint interests in their own governing language.

PRACTICAL ACTION

What now? Academic training of conservation scientists should more accurately portray the rich, global history of the field, introducing students to the diverse ways in which nature has been valued and conserved for centuries. More forums at conferences, in journals and on social media are needed to elevate the voices of scientists and practitioners from under-represented genders, cultures and contexts. Conservation organizations and scientists can embrace all plausible conservation actors, from corporations to governmental agencies, faith-based organizations and interested individuals, and advance conservation efforts when they can benefit people and when there is no obvious human-centric goal.

These efforts must be underpinned by a stronger focus on synthesizing and expanding the evidence base that can identify what works and what fails in conservation so that we can move from philosophical debates to rigorous assessments of the effectiveness of actions. And we must encourage the full breadth of conservation scientists and practitioners to engage with the media so that coverage reflects the true range of opinion (for example, the 240 co-signatories listed are ready for interview) rather than the polarized voices of a few. To add your name to this petition, visit diverseconservation.org.

It is time to re-focus the field of conservation on advancing and sharing knowledge in all relevant disciplines and contexts, and testing hypotheses based on observations, experiments and models. We call for an end to the fighting. We call for a conservation ethic that is diverse in its acceptance of genders, cultures, ages and values.

Heather Tallis is lead scientist at the Nature Conservancy in Santa Cruz, California, USA. Jane Lubchenco is professor of marine biology and of zoology at Oregon State University in Corvallis, Oregon, USA. e-mail: httallis@tnc.org.

For a full list of co-signatories and further reading on this topic, see go.nature.com/tezttv.
Supplementary information to:
A call for inclusive conservation (Comment in Nature 515, 27–28; 2014)

Full list of co-signatories

1 The Nature Conservancy, Santa Cruz, CA 95060, USA
2 Environmental Studies Department, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
3 Department of Integrative Biology, Oregon State University, Corvallis, Oregon 97331, USA
4 Research Institute for the Environment and Livelihoods and Northern Australia National Environmental Research Program Hub, Charles Darwin University, Darwin, Northern Territory, 0909, Australia
5 Global Change Institute, The University of Queensland, St. Lucia, Queensland, 4072, Australia
6 The Nature Conservancy, Coral Gables, FL, 33134, USA
7 Conservation International, Arlington, VA, 22202, USA
8 The Natural Capital Project, Woods Institute for the Environment, Stanford University, 371 Serra Mall, Stanford, CA 94305-5020, USA
9 Centro de Investigaciones en Ecosistemas, Universidad Nacional Autónoma de México, Morelia, Michoacán 5830, Mexico
10 School of Environmental Studies, University of Victoria, Victoria, British Colombia, V8W 2Y2, Canada
11 Centre of Excellence for Environmental Decisions, School of Biological Sciences, University of Queensland, St. Lucia, Brisbane 4072, Australia
12 Department of Natural Resource Sciences and McGill School of Environment, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
13 Stockholm Resilience Centre, Stockholm University, Stockholm 10691, Sweden
14 Centre for Studies in Complexity, Stellenbosch University, Stellenbosch 7600, South Africa
15 Marine Science Institute, University of California, Santa Barbara, CA 93105, USA
16 Center for Penguins as Ocean Sentinels, Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
75 School of Development, Azim Premji University, PES Institute of Technology Campus, Pixel Park, Electronics City, Bangalore - 560100, India
76 The Nature Conservancy, Arlington VA, 22203, USA
77 Lund University Centre for Sustainability Studies, P.O. Box 170, SE-221 00, Lund, Sweden
78 Department of Biology, Romberg Tiburon Center for Environmental Studies, San Francisco State University, Tiburon, CA, 94920, USA
79 School of Integrative Biology, University of Illinois at Urbana-Champaign, University of Illinois, Urbana, IL 61801, USA
80 Nicholas Institute for Environmental Policy Solutions and Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
81 Department of Natural Resources and Environmental Management, University of Hawai‘i Manoa, Honolulu, HI 96822, USA
82 Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794-5245, USA
83 Earth to Ocean Research Group, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
84 National Socio-Environmental Synthesis Center, Annapolis, MD 21401 USA
85 Department of Biology and Management of Aquatic Resources, Centro Nacional Patagónico CONICET, Av. Rivadavia 1917 (C1033AAJ) Ciudad Autónoma de Buenos Aires - República Argentina
86 Department of Geography, Florida State University, Tallahassee, FL 32306, USA
87 Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO 80523, USA
88 School of Biological Sciences, University of Queensland, St Lucia, Brisbane 4072, Australia
89 Research Professor, Odum School of Ecology, The University of Georgia, Athens, GA. 30602-2602, USA
90 Natural Resources and the Environment, Council for Scientific and Industrial Research, Stellenbosch, 7599 South Africa
91 Natural Resource Ecology & Management Department, Iowa State University, 339 Science II, Ames, Iowa, 50011, USA
92 Hawai‘i Institute of Marine Biology, University of Hawai‘i, Kāne‘ohe, Hawai‘i 96744, USA
93 Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA
94 University of Wisconsin, Center for Limnology, Madison, WI 53706, USA
95 Percy FitzPatrick Institute, DST/NRF Centre of Excellence, University of Cape Town, Rondebosch 7700, Cape Town, South Africa
96 Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
97 The Nature Conservancy, Seattle, WA 98101, USA
98 Florida International University, Southeast Environmental Research Center (OE 148) & Department of Biological Sciences, Miami, FL, 33199, USA
99 College of Science and Mathematics, University of the Virgin Islands, St Thomas, USVI 00802, USA
100 Department of Zoology, University of Otago, Dunedin, New Zealand
101 Extension and Outreach, Federal University of Bahia, 40170-115, Salvador, Bahia, Brazil
102 Biology Institute, Federal University of Bahia, 40170-210 Salvador, Bahia, Brazil
103 Biology Department, University of Central Florida, Orlando, FL 32816, USA
104 The Nature Conservancy, Boulder, CO 80302, USA
105 The Nature Conservancy, University of North Carolina, Institute of Marine Sciences, Morehead City, NC 28557, USA
106 The Nature Conservancy, University of Rhode Island, Narrangansett Bay Campus, Narrangansett, RI, 02882-1197, USA
107 Catalan Institute for Water Research, 17003 Girona, Spain
108 Agroecology, Department of Crop Sciences, Georg-August University, Göttingen, Germany
109 Department of Environmental Sciences, Emory University, Atlanta, GA, 30322, USA
110 Resources for the Future, Center for Management of Ecological Wealth, Washington, DC 20036, USA
111 Department of Anthropology, Indiana University, Bloomington, IN, 47405, USA
112 Center for Limnology, University of Wisconsin-Madison, Madison, WI, 53706, USA
113 Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA
114 Biology Program, Universidad del Rosario, Bogota D.C., Colombia
115 School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06511, U.S.A.
116 CSIRO Land and Water Flagship, Glen Osmond, South Australia, 5064, Australia
117 Bren School of Environmental Science and Management, University of California, Santa Barbara, CA, 93106, USA
118 Bioversity International, Montpellier Cedex 5, France
119 Social–Ecological Systems Laboratory, Department of Ecology, Universidad Autónoma de Madrid, 28049, Madrid, Spain
120 Wageningen University, Environmental Systems Analysis Group, Wageningen, Netherlands
121 International Human Dimensions Program–United Nations University, Bonn, Germany
122 University of Washington, School of Aquatic and Fishery Sciences, Seattle, Washington, 98195-5200, USA
123 The Nature Conservancy, Minneapolis, MN 55415
124 Department of Economics, Andrew Young School of Policy Studies, Georgia State University, Atlanta, USA
125 World Wildlife Fund (WWF), Washington, DC 20037, USA
126 The Nature Conservancy, West End, QLD 4101, Australia
127 Department of Civil, Environmental and Mechanical Engineering, University of Trento, Trento 38123, Italy
128 International Center for Tropical Agriculture, Nairobi, Kenya
129 The Nature Conservancy, Ft. Collins, CO, 80524, USA
130 The Nature Conservancy, Bozeman, MT, USA
131 Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, V6T1Z4, Canada
132 Energy and Resources Group, University of California, Berkeley, California 94720 USA
133 The Nature Conservancy, Chicago, IL 60603, USA
134 Ecosystem Restoration and Intervention Ecology Research Group, School of Plant Biology, University of Western Australia, Perth, Western Australia, Australia
135Center for Biodiversity Strategies, Faculty of Science and Mathematics, Universitas Indonesia, Depok Campus, Depok 16424, Indonesia
136The Nature Conservancy, Berkeley, CA, 94705, USA
137School of Environmental and Forest Sciences, University of Washington, Seattle, WA, 98195, USA
138Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, Seattle, USA
139Biology Department, Franklin and Marshall College, Lancaster, PA, 17603, USA
140The Nature Conservancy, Boston, MA, 02111, USA
141People and Nature Consulting International - Borneo Futures project, Jakarta 15412, Indonesia
142Department of Economics, Bowdoin College, Brunswick, ME, 04011-8497, USA
143The Nature Conservancy, Chagrin Falls, OH, 44022, USA
144Cary Institute of Ecosystem Studies, Millbrook, NY 12546–0129, USA
145Centro Nacional Patagónico–CONICET, Puerto Madryn, Chubut, Argentina
146Duke University, Durham, NC, USA
147The David and Lucile Packard Foundation, Los Altos, CA
148The Nature Conservancy, 5834 St George Avenue, Crozet, Virginia 22932, USA
149Gund Institute for Ecological Economics, University of Vermont, Burlington, VT 05405, USA
150Environment Department, University of York, Heslington, York YO10 5DD, UK
151School of Life Sciences, University of Sussex, Brighton, United Kingdom
152Aquatic Ecology and Water Quality Management, Wageningen University, Wageningen, The Netherlands
153Division of Marine Science, Nicholas School of the Environment, Duke University, Beaufort, NC 28516
154Landscape Conservation Initiative; Northern Arizona University; Flagstaff, Arizona 86011 USA
155CGIAR, Montpellier Cedex 5, France
156Fisheries Economics Research Unit, Fisheries Centre, University of British Columbia, Vancouver, BC, Canada
157Charles University in Prague, Environment Center, 162 00 Prague, Czech Republic
158Global Change Research Centre, Academy of Sciences of the Czech Republic, 603 00 Brno, Czech Republic